This commit is contained in:
space-nuko
2023-05-19 12:09:26 -05:00
parent ec80884684
commit 9a0f508010
8 changed files with 315 additions and 257 deletions

View File

@@ -1,149 +1,5 @@
import { z, type ZodTypeAny } from "zod"
const ModelHashes = z.object({
a1111_shorthash: z.string().optional(),
sha256: z.string().optional(),
}).refine(({ a1111_shorthash, sha256 }) =>
a1111_shorthash !== undefined || sha256 !== undefined,
{ message: "At least one model hash must be specified" })
const GroupConditioning = z.object({
text: z.string(),
})
export type ComfyBoxStdGroupConditioning = z.infer<typeof GroupConditioning>
const GroupCheckpoint = z.object({
model_name: z.string().optional(),
model_hashes: ModelHashes.optional(),
}).refine(({ model_name, model_hashes }) =>
model_name !== undefined || model_hashes !== undefined,
{ message: "Must include either model name or model hash" }
)
export type ComfyBoxStdGroupCheckpoint = z.infer<typeof GroupCheckpoint>
const GroupVAE = z.object({
model_name: z.string().optional(),
model_hashes: ModelHashes.optional(),
type: z.enum(["internal", "external"])
}).refine(({ model_name, model_hashes }) =>
model_name !== undefined || model_hashes !== undefined,
{ message: "Must include either model name or model hashes" }
)
export type ComfyBoxStdGroupVAE = z.infer<typeof GroupVAE>
const GroupKSampler = z.object({
cfg_scale: z.number(),
seed: z.number(),
steps: z.number(),
sampler_name: z.string(),
scheduler: z.string(),
denoise: z.number().default(1.0),
type: z.enum(["empty", "image", "upscale"]).optional()
})
export type ComfyBoxStdGroupKSampler = z.infer<typeof GroupKSampler>
const GroupLatentImage = z.object({
width: z.number(),
height: z.number(),
type: z.enum(["empty", "image", "upscale"]).optional(),
upscale_method: z.string().optional(),
upscale_by: z.number().optional(),
crop: z.string().optional(),
mask_blur: z.number().optional(),
batch_count: z.number().default(1).optional(),
batch_pos: z.number().default(0).optional()
})
export type ComfyBoxStdGroupLatentImage = z.infer<typeof GroupLatentImage>
const GroupSDUpscale = z.object({
upscaler: z.string(),
overlap: z.number(),
})
export type ComfyBoxStdGroupSDUpscale = z.infer<typeof GroupSDUpscale>
const GroupSelfAttentionGuidance = z.object({
guidance_scale: z.number(),
mask_threshold: z.number(),
})
export type ComfyBoxStdGroupSelfAttentionGuidance = z.infer<typeof GroupSelfAttentionGuidance>
const GroupHypernetwork = z.object({
model_name: z.string(),
model_hashes: ModelHashes.optional(),
strength: z.number()
})
export type ComfyBoxStdGroupHypernetwork = z.infer<typeof GroupHypernetwork>
const LoRAModelHashes = z.object({
addnet_shorthash: z.string().optional(),
addnet_shorthash_legacy: z.string().optional(),
sha256: z.string().optional(),
}).refine(({ addnet_shorthash, addnet_shorthash_legacy, sha256 }) =>
addnet_shorthash !== undefined || addnet_shorthash_legacy !== undefined || sha256 !== undefined,
{ message: "At least one model hash must be specified" })
const GroupLoRA = z.object({
model_name: z.string(),
module_name: z.string().optional(),
model_hashes: LoRAModelHashes.optional(),
strength_unet: z.number(),
strength_tenc: z.number()
})
export type ComfyBoxStdGroupLoRA = z.infer<typeof GroupLoRA>
const GroupControlNet = z.object({
model: z.string(),
model_hashes: ModelHashes.optional(),
strength: z.number(),
})
export type ComfyBoxStdGroupControlNet = z.infer<typeof GroupControlNet>
const GroupCLIP = z.object({
clip_skip: z.number().optional()
})
export type ComfyBoxStdGroupCLIP = z.infer<typeof GroupCLIP>
const GroupDynamicThresholding = z.object({
mimic_scale: z.number(),
threshold_percentile: z.number(),
mimic_mode: z.string(),
mimic_scale_minimum: z.number(),
cfg_mode: z.string(),
cfg_scale_minimum: z.number()
})
export type ComfyBoxStdGroupDynamicThresholding = z.infer<typeof GroupDynamicThresholding>
const GroupAestheticEmbedding = z.object({
model_name: z.string(),
lr: z.number(),
slerp: z.boolean(),
slerp_angle: z.number(),
steps: z.number(),
positive: z.string(),
negative: z.string(),
weight: z.number(),
})
export type ComfyBoxStdGroupAestheticEmbedding = z.infer<typeof GroupAestheticEmbedding>
const GroupDDetailer = z.object({
positive_prompt: z.string(),
negative_prompt: z.string(),
bitwise: z.string(),
model: z.string().optional(),
model_hashes: ModelHashes.optional(),
conf: z.number(),
mask_blur: z.number(),
denoise: z.number(),
dilation: z.number(),
offset_x: z.number(),
offset_y: z.number(),
preprocess: z.boolean(),
inpaint_full: z.boolean(),
inpaint_padding: z.number(),
cfg: z.number()
})
export type ComfyBoxStdGroupDDetailer = z.infer<typeof GroupDDetailer>
/*
* This metadata can be attached to each entry in a group to assist in
* identifying the correct nodes to apply it to.
@@ -170,25 +26,180 @@ const GroupMetadata = z.object({
})
export type ComfyBoxStdGroupMetadata = z.infer<typeof GroupMetadata>
const group = (entry: ZodTypeAny) => {
const groupEntry = entry.and(z.object({ "$meta": GroupMetadata }))
return z.optional(z.array(groupEntry).nonempty());
const group = (obj: Record<string, any>): ZodTypeAny => {
const meta = z.object({ "$meta": GroupMetadata.optional() })
return z.object(obj).and(meta)
}
const ModelHashes = z.object({
a1111_shorthash: z.string().optional(),
sha256: z.string().optional(),
}).refine(({ a1111_shorthash, sha256 }) =>
a1111_shorthash !== undefined || sha256 !== undefined,
{ message: "At least one model hash must be specified" })
const GroupConditioning = group({
text: z.string(),
})
export type ComfyBoxStdGroupConditioning = z.infer<typeof GroupConditioning>
const GroupCheckpoint = group({
model_name: z.string().optional(),
model_hashes: ModelHashes.optional(),
}).refine(({ model_name, model_hashes }) =>
model_name !== undefined || model_hashes !== undefined,
{ message: "Must include either model name or model hash" }
)
export type ComfyBoxStdGroupCheckpoint = z.infer<typeof GroupCheckpoint>
const GroupVAE = group({
model_name: z.string().optional(),
model_hashes: ModelHashes.optional(),
type: z.enum(["internal", "external"])
}).refine(({ model_name, model_hashes }) =>
model_name !== undefined || model_hashes !== undefined,
{ message: "Must include either model name or model hashes" }
)
export type ComfyBoxStdGroupVAE = z.infer<typeof GroupVAE>
const GroupKSampler = group({
cfg_scale: z.number(),
seed: z.number(),
steps: z.number(),
sampler_name: z.string(),
scheduler: z.string(),
denoise: z.number().default(1.0),
type: z.enum(["empty", "image", "upscale"]).optional()
})
export type ComfyBoxStdGroupKSampler = z.infer<typeof GroupKSampler>
const GroupLatentImage = group({
width: z.number(),
height: z.number(),
mask_blur: z.number().optional(),
batch_count: z.number().default(1).optional(),
batch_pos: z.number().default(0).optional()
})
export type ComfyBoxStdGroupLatentImage = z.infer<typeof GroupLatentImage>
const GroupLatentUpscale = group({
width: z.number(),
height: z.number(),
upscale_method: z.string().optional(),
upscale_by: z.number().optional(),
crop: z.string().optional()
})
export type ComfyBoxStdGroupLatentUpscale = z.infer<typeof GroupLatentUpscale>
const GroupSDUpscale = group({
upscaler: z.string(),
overlap: z.number(),
})
export type ComfyBoxStdGroupSDUpscale = z.infer<typeof GroupSDUpscale>
const GroupSelfAttentionGuidance = group({
guidance_scale: z.number(),
mask_threshold: z.number(),
})
export type ComfyBoxStdGroupSelfAttentionGuidance = z.infer<typeof GroupSelfAttentionGuidance>
const GroupHypernetwork = group({
model_name: z.string(),
model_hashes: ModelHashes.optional(),
strength: z.number()
})
export type ComfyBoxStdGroupHypernetwork = z.infer<typeof GroupHypernetwork>
const LoRAModelHashes = z.object({
addnet_shorthash: z.string().optional(),
addnet_shorthash_legacy: z.string().optional(),
sha256: z.string().optional(),
}).refine(({ addnet_shorthash, addnet_shorthash_legacy, sha256 }) =>
addnet_shorthash !== undefined || addnet_shorthash_legacy !== undefined || sha256 !== undefined,
{ message: "At least one model hash must be specified" })
const GroupLoRA = group({
model_name: z.string(),
module_name: z.string().optional(),
model_hashes: LoRAModelHashes.optional(),
strength_unet: z.number(),
strength_tenc: z.number()
})
export type ComfyBoxStdGroupLoRA = z.infer<typeof GroupLoRA>
const GroupControlNet = group({
model: z.string(),
model_hashes: ModelHashes.optional(),
strength: z.number(),
})
export type ComfyBoxStdGroupControlNet = z.infer<typeof GroupControlNet>
const GroupCLIP = group({
clip_skip: z.number().optional()
})
export type ComfyBoxStdGroupCLIP = z.infer<typeof GroupCLIP>
const GroupDynamicThresholding = group({
mimic_scale: z.number(),
threshold_percentile: z.number(),
mimic_mode: z.string(),
mimic_scale_minimum: z.number(),
cfg_mode: z.string(),
cfg_scale_minimum: z.number()
})
export type ComfyBoxStdGroupDynamicThresholding = z.infer<typeof GroupDynamicThresholding>
const GroupAestheticEmbedding = group({
model_name: z.string(),
lr: z.number(),
slerp: z.boolean(),
slerp_angle: z.number().optional(),
steps: z.number(),
text: z.string(),
text_negative: z.boolean(),
weight: z.number(),
})
export type ComfyBoxStdGroupAestheticEmbedding = z.infer<typeof GroupAestheticEmbedding>
const GroupDDetailer = group({
positive_prompt: z.string(),
negative_prompt: z.string(),
bitwise: z.string(),
model: z.string().optional(),
model_hashes: ModelHashes.optional(),
conf: z.number(),
mask_blur: z.number(),
denoise: z.number(),
dilation: z.number(),
offset_x: z.number(),
offset_y: z.number(),
preprocess: z.boolean(),
inpaint_full: z.boolean(),
inpaint_padding: z.number(),
cfg: z.number()
})
export type ComfyBoxStdGroupDDetailer = z.infer<typeof GroupDDetailer>
const groupArray = (entry: ZodTypeAny) => {
return z.optional(z.array(entry).nonempty());
}
const Parameters = z.object({
conditioning: group(GroupConditioning),
checkpoint: group(GroupCheckpoint),
vae: group(GroupVAE),
k_sampler: group(GroupKSampler),
clip: group(GroupCLIP),
latent_image: group(GroupLatentImage),
sd_upscale: group(GroupSDUpscale),
hypernetwork: group(GroupHypernetwork),
lora: group(GroupLoRA),
control_net: group(GroupControlNet),
dynamic_thresholding: group(GroupDynamicThresholding),
self_attention_guidance: group(GroupSelfAttentionGuidance),
ddetailer: group(GroupDDetailer)
conditioning: groupArray(GroupConditioning),
checkpoint: groupArray(GroupCheckpoint),
vae: groupArray(GroupVAE),
k_sampler: groupArray(GroupKSampler),
clip: groupArray(GroupCLIP),
latent_image: groupArray(GroupLatentImage),
latent_upscale: groupArray(GroupLatentUpscale),
sd_upscale: groupArray(GroupSDUpscale),
hypernetwork: groupArray(GroupHypernetwork),
lora: groupArray(GroupLoRA),
control_net: groupArray(GroupControlNet),
dynamic_thresholding: groupArray(GroupDynamicThresholding),
aesthetic_embedding: groupArray(GroupAestheticEmbedding),
self_attention_guidance: groupArray(GroupSelfAttentionGuidance),
ddetailer: groupArray(GroupDDetailer)
}).partial()
export type ComfyBoxStdParameters = z.infer<typeof Parameters>

View File

@@ -0,0 +1,55 @@
import type { ComfyBoxStdGroupLoRA, ComfyBoxStdPrompt } from "$lib/ComfyBoxStdPrompt";
import type { SerializedPrompt, SerializedPromptInputs } from "./components/ComfyApp";
export type ComfyPromptConverter = (stdPrompt: ComfyBoxStdPrompt, inputs: SerializedPromptInputs, nodeID: ComfyNodeID) => void;
function LoraLoader(stdPrompt: ComfyBoxStdPrompt, inputs: SerializedPromptInputs) {
const params = stdPrompt.parameters
const lora: ComfyBoxStdGroupLoRA = {
model_name: inputs["lora_name"],
strength_unet: inputs["strength_model"],
strength_tenc: inputs["strength_clip"]
}
if (params.lora)
params.lora.push(lora)
else
params.lora = [lora]
}
const ALL_CONVERTERS: Record<string, ComfyPromptConverter> = {
LoraLoader
}
const COMMIT_HASH: string = __GIT_COMMIT_HASH__;
export default class ComfyBoxStdPromptSerializer {
serialize(prompt: SerializedPrompt): ComfyBoxStdPrompt {
const stdPrompt: ComfyBoxStdPrompt = {
version: 1,
metadata: {
created_with: "ComfyBox",
commit_hash: COMMIT_HASH,
extra_data: {
comfybox: {
}
}
},
parameters: {}
}
for (const [nodeID, inputs] of Object.entries(prompt.output)) {
const classType = inputs.class_type
const converter = ALL_CONVERTERS[classType]
if (converter) {
converter(stdPrompt, inputs.inputs, nodeID)
}
else {
console.warn("No StdPrompt type converter for comfy class!", classType)
}
}
return stdPrompt
}
}

View File

@@ -1,26 +0,0 @@
import type { ComfyBoxStdGroupLoRA, ComfyBoxStdPrompt } from "./ComfyBoxStdPrompt";
import type { ComfyNodeID } from "./api";
import type { SerializedPromptInputs } from "./components/ComfyApp";
import type { ComfyBackendNode } from "./nodes/ComfyBackendNode";
export type ComfyPromptConverter = (stdPrompt: ComfyBoxStdPrompt, inputs: SerializedPromptInputs, nodeID: ComfyNodeID) => void;
function LoraLoader(stdPrompt: ComfyBoxStdPrompt, inputs: SerializedPromptInputs) {
const params = stdPrompt.prompt.parameters
const lora: ComfyBoxStdGroupLoRA = {
model_name: inputs["lora_name"],
strength_unet: inputs["strength_model"],
strength_tenc: inputs["strength_clip"]
}
if (params.lora)
params.lora.push(lora)
else
params.lora = [lora]
}
const converters: Record<string, ComfyPromptConverter> = {
LoraLoader
}
export default converters;

View File

@@ -40,7 +40,7 @@ import { ComfyComboNode } from "$lib/nodes/widgets";
import parseA1111, { type A1111ParsedInfotext } from "$lib/parseA1111";
import convertA1111ToStdPrompt from "$lib/convertA1111ToStdPrompt";
import type { ComfyBoxStdPrompt } from "$lib/ComfyBoxStdPrompt";
import ComfyBoxStdPromptSerializer from "./ComfyBoxStdPromptSerializer";
import ComfyBoxStdPromptSerializer from "$lib/ComfyBoxStdPromptSerializer";
export const COMFYBOX_SERIAL_VERSION = 1;

View File

@@ -1,35 +0,0 @@
import type { ComfyBoxStdPrompt } from "$lib/ComfyBoxStdPrompt";
import type { SerializedPrompt } from "./ComfyApp";
import comfyStdPromptConverters from "$lib/comfyStdPromptConverters"
const COMMIT_HASH: string = "asdf";
export default class ComfyBoxStdPromptSerializer {
serialize(prompt: SerializedPrompt): ComfyBoxStdPrompt {
const stdPrompt: ComfyBoxStdPrompt = {
version: 1,
metadata: {
created_with: "ComfyBox",
commit_hash: COMMIT_HASH,
extra_data: {
comfybox: {
}
}
},
parameters: {}
}
for (const [nodeID, inputs] of Object.entries(prompt.output)) {
const classType = inputs.class_type
const converter = comfyStdPromptConverters[classType]
if (converter) {
converter(stdPrompt, inputs.inputs, nodeID)
}
else {
console.warn("No StdPrompt type converter for comfy class!", classType)
}
}
return stdPrompt
}
}

View File

@@ -1,4 +1,4 @@
import type { ComfyBoxStdGroupCheckpoint, ComfyBoxStdGroupDDetailer, ComfyBoxStdGroupDynamicThresholding, ComfyBoxStdGroupHypernetwork, ComfyBoxStdGroupKSampler, ComfyBoxStdGroupLatentImage, ComfyBoxStdGroupLoRA, ComfyBoxStdGroupSelfAttentionGuidance, ComfyBoxStdParameters, ComfyBoxStdPrompt } from "./ComfyBoxStdPrompt";
import type { ComfyBoxStdGroupAestheticEmbedding, ComfyBoxStdGroupCheckpoint, ComfyBoxStdGroupDDetailer, ComfyBoxStdGroupDynamicThresholding, ComfyBoxStdGroupHypernetwork, ComfyBoxStdGroupKSampler, ComfyBoxStdGroupLatentImage, ComfyBoxStdGroupLatentUpscale, ComfyBoxStdGroupLoRA, ComfyBoxStdGroupSelfAttentionGuidance, ComfyBoxStdParameters, ComfyBoxStdPrompt } from "./ComfyBoxStdPrompt";
import type { A1111ParsedInfotext } from "./parseA1111";
function getSamplerAndScheduler(a1111Sampler: string): [string, string] {
@@ -13,14 +13,14 @@ function getSamplerAndScheduler(a1111Sampler: string): [string, string] {
return [name, scheduler]
}
const reAddNetModelName = /^([^(]+)\(([^)]+)\)$/;
const reAddNetModelName = /^([^(]+)\((.+)\)$/;
function parseAddNetModelNameAndHash(name: string | null): [string | undefined, string | undefined] {
if (!name)
return [undefined, undefined]
const match = name.match(reAddNetModelName);
if (match) {
if (match != null) {
return [match[1], match[2]]
}
return [undefined, undefined]
@@ -34,7 +34,7 @@ function parseDDetailerModelNameAndHash(name: string | null): [string | undefine
// bbox\mmdet_anime-face_yolov3.pth [51e1af4a]
const match = name.match(reDDetailerModelName);
if (match) {
if (match != null) {
return [match[1], match[2]]
}
return [undefined, undefined]
@@ -51,13 +51,13 @@ export default function convertA1111ToStdPrompt(infotext: A1111ParsedInfotext):
parameters.conditioning = [
{
"^meta": {
"$meta": {
types: ["positive"]
},
text: infotext.positive,
},
{
"^meta": {
"$meta": {
types: ["negative"]
},
text: infotext.negative,
@@ -100,16 +100,13 @@ export default function convertA1111ToStdPrompt(infotext: A1111ParsedInfotext):
uw = +hrWidth;
uh = +hrHeight;
}
const hr_image: ComfyBoxStdGroupLatentImage = {
type: "upscale",
const hr: ComfyBoxStdGroupLatentUpscale = {
width: uw,
height: uh,
upscale_by: hrScaleBy,
batch_count: infotext.batchSize,
batch_pos: infotext.batchPos,
upscale_method: hrMethod
}
parameters.latent_image.push(hr_image)
parameters.latent_upscale = [hr];
}
const [sampler_name, scheduler] = getSamplerAndScheduler(infotext.sampler)
@@ -126,7 +123,9 @@ export default function convertA1111ToStdPrompt(infotext: A1111ParsedInfotext):
if (hrMethod != null) {
const k_sampler_hr: ComfyBoxStdGroupKSampler = {
type: "upscale",
"$meta": {
types: ["upscale"]
},
steps: hrSteps != null ? parseInt(hrSteps) : infotext.steps,
seed: infotext.seed,
cfg_scale: infotext.cfgScale,
@@ -163,6 +162,21 @@ export default function convertA1111ToStdPrompt(infotext: A1111ParsedInfotext):
}]
}
if ("aesthetic embedding" in infotext.extraParams) {
const slerp = popOpt("aesthetic slerp") === "True"
const aesthetic_embedding: ComfyBoxStdGroupAestheticEmbedding = {
model_name: popOpt("aesthetic embedding"),
lr: parseFloat(popOpt("aesthetic lr")),
slerp,
slerp_angle: parseFloat(popOpt("aesthetic slerp angle")),
steps: parseInt(popOpt("aesthetic steps")),
text: popOpt("aesthetic text"),
text_negative: popOpt("aesthetic text negative") === "True",
weight: parseFloat(popOpt("aesthetic weight")),
}
parameters.aesthetic_embedding = [aesthetic_embedding]
}
if ("dynamic thresholding enabled" in infotext.extraParams) {
const dtEnabled = popOpt("dynamic thresholding enabled")
if (dtEnabled === "True") {
@@ -287,8 +301,15 @@ export default function convertA1111ToStdPrompt(infotext: A1111ParsedInfotext):
popOpt("addnet enabled")
const moduleName = popOpt(`addnet module ${index}`)
const modelName = popOpt(`addnet model ${index}`);
const weightA = popOpt(`addnet weight a ${index}`);
const weightB = popOpt(`addnet weight b ${index}`);
const weight = popOpt(`addnet weight ${index}`);
let weightA = popOpt(`addnet weight a ${index}`);
let weightB = popOpt(`addnet weight b ${index}`);
if (weightA == null || weightB == null) {
// linked weights before addnet version update
weightA = weight;
weightB = weight;
}
if (moduleName == null || modelName == null || weightA == null || weightB == null) {
throw new Error(`Error parsing addnet model params: ${moduleName} ${modelName} ${weightA} ${weightB}`)
@@ -300,7 +321,7 @@ export default function convertA1111ToStdPrompt(infotext: A1111ParsedInfotext):
const [name, hash] = parseAddNetModelNameAndHash(modelName);
if (name == null || hash == null) {
throw new Error("Error parsing addnet model name: " + modelName);
throw new Error("Error parsing addnet model name: " + JSON.stringify(modelName));
}
let shorthash = undefined
@@ -335,16 +356,17 @@ export default function convertA1111ToStdPrompt(infotext: A1111ParsedInfotext):
let app_version = popOpt("version")
const extra_data: Record<string, any> = {};
if (Object.keys(infotext.extraParams).length > 0) {
extra_data.a1111 = { params: infotext.extraParams }
}
const prompt: ComfyBoxStdPrompt = {
version: 1,
metadata: {
created_with: "stable-diffusion-webui",
app_version,
extra_data: {
a1111: {
params: infotext.extraParams
}
}
extra_data
},
parameters
}

View File

@@ -45,13 +45,13 @@ export default class convertA1111ToStdPromptTests extends UnitTest {
}
}],
conditioning: [{
"^meta": {
"$meta": {
types: ["positive"]
},
text: "highest quality, masterpiece, best quality, masterpiece, asuka langley sitting cross legged on a chair",
}, {
"^meta": {
types: ["positive"]
"$meta": {
types: ["negative"]
},
text: "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name"
}],
@@ -69,11 +69,21 @@ export default class convertA1111ToStdPromptTests extends UnitTest {
latent_image: [{
width: 512,
height: 512,
}],
aesthetic_embedding: [{
lr: 0.0005,
model_name: "Belle",
text: "",
text_negative: false,
slerp: false,
slerp_angle: 0.1,
steps: 15,
weight: 0.9
}]
}
})
expect(ComfyBoxStdPrompt.safeParse(converted).success).toEqual(true);
expect(() => ComfyBoxStdPrompt.parse(converted)).not.toThrow();
}
test__convertsExtraNetworks() {
@@ -112,7 +122,13 @@ export default class convertA1111ToStdPromptTests extends UnitTest {
version: 1,
metadata: {
created_with: "stable-diffusion-webui",
extra_data: {}
extra_data: {
a1111: {
params: {
"ensd": "31337"
}
}
}
},
parameters: {
checkpoint: [{
@@ -122,12 +138,12 @@ export default class convertA1111ToStdPromptTests extends UnitTest {
}
}],
conditioning: [{
"^meta": {
"$meta": {
types: ["positive"]
},
text: "dreamlike fantasy landscape where everything is a shade of pink,\n dog ",
}, {
"^meta": {
"$meta": {
types: ["negative"]
},
text: "(worst quality:1.4), (low quality:1.4) , (monochrome:1.1)"
@@ -141,6 +157,7 @@ export default class convertA1111ToStdPromptTests extends UnitTest {
}],
lora: [{
model_name: "asdfg",
module_name: "lora",
strength_unet: 0.8,
strength_tenc: 0.8,
}],
@@ -152,7 +169,9 @@ export default class convertA1111ToStdPromptTests extends UnitTest {
seed: 2416682767,
steps: 40
}, {
type: "upscale",
"$meta": {
types: ["upscale"]
},
cfg_scale: 12,
denoise: 0.55,
sampler_name: "dpmpp_2m",
@@ -163,8 +182,8 @@ export default class convertA1111ToStdPromptTests extends UnitTest {
latent_image: [{
width: 640,
height: 512,
}, {
type: "upscale",
}],
latent_upscale: [{
width: 1280,
height: 1024,
upscale_by: 2,
@@ -173,7 +192,7 @@ export default class convertA1111ToStdPromptTests extends UnitTest {
}
})
expect(ComfyBoxStdPrompt.safeParse(converted).success).toEqual(true);
expect(() => ComfyBoxStdPrompt.parse(converted)).not.toThrow();
}
test__convertsAdditionalNetworks() {
@@ -217,7 +236,16 @@ export default class convertA1111ToStdPromptTests extends UnitTest {
version: 1,
metadata: {
created_with: "stable-diffusion-webui",
extra_data: {}
extra_data: {
a1111: {
params: {
"ensd": "31337",
// TODO
"template": "1girl",
"negative template": "(worst quality",
}
}
}
},
parameters: {
checkpoint: [{
@@ -227,12 +255,12 @@ export default class convertA1111ToStdPromptTests extends UnitTest {
}
}],
conditioning: [{
"^meta": {
"$meta": {
types: ["positive"]
},
text: "1girl, pink hair",
}, {
"^meta": {
"$meta": {
types: ["negative"]
},
text: "(worst quality, low quality:1.4)",
@@ -275,6 +303,6 @@ export default class convertA1111ToStdPromptTests extends UnitTest {
}
})
expect(ComfyBoxStdPrompt.safeParse(converted).success).toEqual(true);
expect(() => ComfyBoxStdPrompt.parse(converted)).not.toThrow();
}
}

View File

@@ -11,6 +11,9 @@ const isProduction = process.env.NODE_ENV === "production";
console.log("Production build: " + isProduction)
export default defineConfig({
define: {
"__GIT_COMMIT_HASH__": '"asdf"'
},
clearScreen: false,
base: "./",
plugins: [